• 生活小妙招免费各类生活中的小问题知识以及音乐简谱等,是你了解世界未知知识的好地方。

数据分析真的每天都是python,SQL吗?转行数据分析的话要重点学习什么呢?

十万个为什么 空空 2024-3-21 16:55:54 4次浏览

关于问题数据分析真的每天都是 python,SQL 吗?转行数据分析的话要重点学习什么呢?一共有 5 位热心网友为你解答:

【1】、来自网友【gongjing2012】的最佳回答:

1、SQL 是必备的。

2、一些 python 的分析工具包,numpy、pandas、matplotlib 库要熟悉。

3、要会 ETL。如:ETL 工具 离线: sqoop、DataX、Kettle,实时:StreamSets。

ETL(提取、转换、加载)指数据驱动型组织从多个来源收集数据,然后将数据集中起来以满足数据发现、报告、分析和决策需求的过程。

4、另外一些 BI 工具要熟悉,不光分析数据,还得展示出来给大众看,像 powerBI,fineBI,superBI,Tableau。

5、大数据方向的技术也是必备的。如:

文件存储:Hadoop HDFS、Tachyon、KFS,NFS、S3 等

离线计算:Hadoop MapReduce、Spark 等

流式、实时计算:Storm、Spark Streaming、S4、Flink 等

NOSQL 数据库:HBase、Redis、MongoDB、Dragonfly 等

资源管理:YARN、Mesos 等

日志收集工具:Flume、Scribe、Logstash、Kibana、Filebeat、Fluenbit、Fluentd 等

消息服务:Kafka、StormMQ、ZeroMQ、RabbitMQ 等

查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid 等

分布式协调服务:Zookeeper 等

集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager 等

数据挖掘、机器学习:PyTorch、Tensorflow、Mahout、Spark MLLib、等

【2】、来自网友【葡萄城 GrapeCity】的最佳回答:

数据分析工作,不仅能通过对真实数据的分析去发现问题,还能够通过经济学原理建立数学模型,对投资或其他决策是否可行进行分析,预测未来的收益及风险情况,为作出科学合理的决策提供依据。

数据分析工作用事实说话,用数据揭示工作现状和发展趋势,改变了凭印象、凭感觉决策的不科学状况,客观地抓住了工作中存在的突出问题,使这些问题无可争辩地反映在面前,促使人们不得不努力提高水平、改正问题。数据分析工作提高了工作效率,增强了管理的科学性。

我们提数据,做报表,这些都是信息的收集,信息的处理,信息的整合;而给结论,是我们需要输出的对这些信息的描述,也就是我们需要告诉别人这些信息到底是啥;因为信息多,我们才要整理,因为整理了,我们才需要提炼有用信息。

一个优秀的数据分析专家,需要具备以下能力:

1、业务能力。数据分析工作并不是简单的数据统计与展示,它有一个重要的前提就是需要懂业务,包括行业知识、公司业务及流程等,最好有自己独到的见解。数据分析的目的就是通过研究数据实现转化增长,若脱离行业背景和公司业务内容,数据分析就是一堆没有价值的数据图表而已。

2、管理能力。数据分析师一方面需要搭建数据分析框架的要求,确定统一的业务指标。另一方面需要针对数据分析的结论研究出根本原因,并为下一步的工作目标做出指导性的规划。

3、分析能力。数据分析师必须要掌握一些行之有效的的数据分析方法,并能灵活的与自身实际工作相结合。数据分析师常用的数据分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

4、工具使用能力。数据分析工具是实现数据分析方法理论的工具,面对越来越庞杂的数据,数据分析师必须要掌握相应的工具去对这些数据进行采集、清洗、分析和处理,以快速准确地的到最后的结果。常用工具有:EXCEL、SQL、Python、R、BI 等

5、设计能力。是指运用图表和图形即将数据分析师的观点清晰、明确地展现出来,使分析结果一目了然。图表设计是门大学问,如何选择图形,如何进行版式设计,颜色怎样搭配等,都需要掌握一定的设计原则。

如果你的自学能力很强,那么你可以参考网上的推荐书籍,自己拿起书本,找些案例开始学习。

如果你需要前辈的指导,那么你可以按照 CDA 数据分析研究院的老师推荐的学习方法来学习数据分析:

首先,数据分析师需要三个方面的能力:技术(编程),数据分析方法,行业知识。

一、数据分析技术

主要包括 excel,sql,BI 分析工具等。

数据分析是个比较大的概念,相关领域也有很多的分析工具,包括:

1、Excel 工具(Excel 的强大必须单列)

2、专业的数据分析工具:SPSS、SAS、Matlib 等

3、数据分析编程工具:Python、R 等

4、商业智能 BI 工具

本文主要想大家推荐自助式 BI 数据分析工具。BI 即商业智能,泛指用于业务分析的技术和工具,通过获取、处理原始数据,将其转化为有价值的信息指导商业行动。Gartner 把 BI 定义为一个概括性的术语,其中包括应用程序、基础设施和工具,通过获取数据、分析信息以改进并优化决策和绩效,形成一套最佳的商业实践。

自助式商业智能和数据可视化工具,让数据分析更简单

自助式 BI(也叫做自助式分析),是一种新的数据分析方式。让没有统计分析、数据挖掘、数据库 SQL 知识的业务人员,也可以通过丰富的数据交互和探索功能,发现数据背后的原因和价值,从而辅助业务决策的制定。自助式 BI 分析功能可以来自于独立的 BI 软件,也可以由行业应用软件直接提供。

BI 数据分析工具,提供自助式 BI 分析功能,最终用户可以非常灵活的与数据交互,探索数据背后的原因并发掘更多价值,为决策制定提供有效的数据支撑。在仪表板设计和分析阶段,提供图表联动、数据钻取、数据切片器、OLAP 等交互式分析功能,用户仅需通过极少的操作,便能找到最有价值的数据。

自助式 BI 的价值

在使用传统商业智能 BI 软件的企业中,需要先准备数据仓库和数据集市,然后由 IT/分析团队创建分析看板和报表,然而,随着企业发展步伐的加快,业务用户需要更快速、更容易地访问数据,这将帮助他们在复杂多变的环境中更好的做出决策。借助自助式 BI 分析工具,可以让这一需求得到满足,还能很好的提高企业的数据文化。

简单易用的 自助式 BI

自助式 BI 从数据准备到 BI 交互式分析整个过程提供了高度易用的分析体验。分析人员通过拖拉拽快速完成数据建模和仪表板设计。不仅设计过程,结果也具备高度自助灵活的数据探查能力。分析过程与业务深度融合,真正让科学决策与业务管理并行。

自助准备数据、创建仪表板和报表

业务人员完全可以自己设计仪表板和报表,根据自己的业务需要进行数据分析、选择合适的数据可视化效果,并形成分析见解,也能直接分析自己的 Excel 等数据,从而避免以往花大量时间准备需求,然后交由 IT 部门开发(或者实施厂商)的业务模式,可以提升企业的整体运行效率,以适应瞬息万变的市场环境。

二、数据分析方法

常用的数据分析方法包括以下 13 种:

1. 描述统计

描述性统计是指运用制表和分类,图形以及计算概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。

2. 假设检验

参数检验

参数检验主要包括 U 验和 T 检验

1)U 验 使用条件:当样本含量 n 较大时,样本值符合正态分布

2)T 检验 使用条件:当样本含量 n 较小时,样本值符合正态分布

非参数检验

非参数检验是针对总体分布情况做的假设,

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

3. 信度分析:检査测量的可信度,例如调查问卷的真实性。

4. 列联表分析:用于分析离散变量或定型变量之间是否存在相关。

5. 相关分析:研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

6. 方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

7. 回归分析

包括:一元线性回归分析、多元线性回归分析、Logistic 回归分析以及其他回归方法:非线性回归、有序回归、加权回归等

8. 聚类分析:样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。

9. 判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体

10. 主成分分析:将彼此相关的一组指标转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。

11. 因子分析:一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

12. R0C 分析

R0C 曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线

13. 其他分析方法

时间序列分析、生存分析、对应分祈、决策树分析、神经网络。

【3】、来自网友【漂流瓶 TG】的最佳回答:

SQL 是必须非常熟的,剩下看公司需要。有的需要可视化,有的需要 excel,有的需要 python,需要 python 的反而要留心,不少就是给领导做一些完全不靠谱的模型、指数、预测之类的,除了用来吹牛体现功绩之外完全不靠谱。

【4】、来自网友【Hykpi 数据科学】的最佳回答:

SQL 是数据分析师最常用的工具,几乎每天都会用到,主要是其基本用法需要掌握。

基础入门可能包含如下:

  • 6 个基本关键词:select/from/where/group by/having/order by
  • Joins:Inner, left, right, outer,以及 self join
  • 聚合函数
  • Window functions

提高篇:

  • 子查询
  • CTE

可以对照看看,自己各点掌握得如何?

Python 在业内使用也挺多,但不是必须,相当企业并没有要求。当然如果你想学习机器学习算法,建模,python 是一个可选的基础之一,其第三方库包及其丰富。

其他的,比如 BI 工具,很多企业使用都不一样,这个其实可以在工作中边学边用。

接下来是重点:

既然是转行到数据分析,就涉及到如何拿到一份 offer 的问题。笔者以往的经历来看,相当多企业,面试开始就是 SQL 技术面。过关之后就会有大量的分析题,这非常考验面试者能力。

数据分析理论知识:

  • 统计知识:描述性统计知识、相关系数、协方差、常见的概率统计分布等;
  • 分析方法和分析模型:用户分群、漏斗分析、归因分析、对比分析等,这块非常多,需要好好学习;

思维能力:这块面试官可以从你的表达,谈吐感受到。往往也是考虑的重点,建议看看经典书籍《金字塔原理》、《批判性思维》等;

项目积累:即使是转行,从未涉及过数据分析工作,在找工作之前,完全可以找到一些项目和数据练手。这样,会让自己有更充足的准备。

相信经过以上的努力准备,题主可以顺利转行,拿到一份好的数据分析 offer。

【5】、来自网友【DataFocus】的最佳回答:

以大数据分析师为目标,从数据分析基础、JAVA 语言入门和 linux 操作系统入门知识学起,系统介绍 Hadoop、HDFS、MapReduce 和 Hbase 等理论知识和 hadoop 的生态环境

一、大数据分析的五个基本方面

1、可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2、数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3、预测性分析能力

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4、语义引擎

大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。

5、数据质量和数据管理

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

二、如何选择适合的数据分析工具

要明白分析什么数据,大数据要分析的数据类型主要有四大类:

1、交易数据(TRANSACTION DATA)

大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括 POS 或电子商务购物数据,还包括行为交易数据,例如 Web 服务器记录的互联网点击流数据日志。

2、人为数据(HUMAN-GENERATED DATA)

非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。

3、移动数据(MOBILE DATA)

能够上网的智能手机和平板越来越普遍。这些移动设备上的 App 都能够追踪和沟通无数事件,从 App 内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。

4、机器和传感器数据(MACHINE AND SENSOR DATA)

器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。

三、如何区分三个大数据热门职业——数据科学家、数据工程师、数据分析师

随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会。数据科学家、数据工程师、数据分析师已经成为大数据行业最热门的职位。它们是如何定义的?具体是做什么工作的?需要哪些技能?让我们一起来看看吧。

这 3 个职业具体有什么职责

数据科学家的工作职责

数据科学家倾向于用探索数据的方式来看待周围的世界。把大量散乱的数据变成结构化的可供分析的数据,还要找出丰富的数据源,整合其他可能不完整的数据源,并清理成结果数据集。新的竞争环境中,挑战不断地变化,新数据不断地流入,数据科学家需要帮助决策者穿梭于各种分析,从临时数据分析到持续的数据交互分析。当他们有所发现,便交流他们的发现,建议新的业务方向。他们很有创造力的展示视觉化的信息,也让找到的模式清晰而有说服力。把蕴含在数据中的规律建议给 Boss,从而影响产品,流程和决策。

数据工程师的工作职责

分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。

大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。

根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。

与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

数据分析师的工作职责

就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。

大数据分析师需要掌握的技能

1、懂业务

从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理

一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

3、懂分析

指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

4、懂工具

指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。

5、懂设计

懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

四、从菜鸟成为数据科学家的 9 步养成方案

首先,各个公司对数据科学家的定义各不相同,当前还没有统一的定义。但在一般情况下,一个数据科学家结合了软件工程师与统计学家的技能,并且在他或者她希望工作的领域投入了大量行业知识。

大约 90%的数据科学家至少有大学教育经历,甚至到博士以及获得博士学位,当然,他们获得的学位的领域非常广泛。一些招聘者甚至发现人文专业的人们有所需的创造力,他们能教别人一些关键技能。

因此,排除一个数据科学的学位计划(世界各地的著名大学雨后春笋般的出现着),你需要采取什么措施,成为一个数据科学家?

复习你的数学和统计技能。一个好的数据科学家必须能够理解数据告诉你的内容,做到这一点,你必须有扎实的基本线性代数,对算法和统计技能的理解。在某些特定场合可能需要高等数学,但这是一个好的开始场合。

了解机器学习的概念。机器学习是下一个新兴词,却和大数据有着千丝万缕的联系。机器学习使用人工智能算法将数据转化为价值,并且无需显式编程。

学习代码。数据科学家必须知道如何调整代码,以便告诉计算机如何分析数据。从一个开放源码的语言如 python 那里开始吧。

了解数据库、数据池及分布式存储。数据存储在数据库、数据池或整个分布式网络中。以及如何建设这些数据的存储库取决于你如何访问、使用、并分析这些数据。如果当你建设你的数据存储时没有整体架构或者超前规划,那后续对你的影响将十分深远。

学习数据修改和数据清洗技术。数据修改是将原始数据到另一种更容易访问和分析的格式。数据清理有助于消除重复和“坏”数据。两者都是数据科学家工具箱中的必备工具。

了解良好的数据可视化和报告的基本知识。你不必成为一个平面设计师,但你确实需要深谙如何创建数据报告,便于外行的人比如你的经理或 CEO 可以理解。

添加更多的工具到您的工具箱。一旦你掌握了以上技巧,是时候扩大你的数据科学工具箱了,包括 Hadoop、R 语言和 Spark。这些工具的使用经验和知识将让你处于大量数据科学求职者之上。

练习。在你在新的领域有一个工作之前,你如何练习成为数据科学家?使用开源代码开发一个你喜欢的项目、参加比赛、成为网络工作数据科学家、参加训练营、志愿者或实习生。最好的数据科学家在数据领域将拥有经验和直觉,能够展示自己的作品,以成为应聘者。

成为社区的一员。跟着同行业中的思想领袖,阅读行业博客和网站,参与,提出问题,并随时了解时事新闻和理论。

五、从入门到精通—快速学会大数据分析

以大数据分析师为目标,我们得从数据分析基础、JAVA 语言入门和 linux 操作系统入门知识学起,系统介绍 Hadoop、HDFS、MapReduce 和 Hbase 等理论知识和 hadoop 的生态环境,hadoop 三种模式的安装配置,基于 mahout 项目的大数据分析之聚类、分类以及主题推荐。这样得学习成本非常得高昂,先不说各种代码学习得难度,光是时间就将是一个漫长得过程,而且我们还需要了解各种行业相关得信息。这让很多人望而却步,现在给大家推荐——DataFocus.

DataFocus 是一款以自然语言搜索引擎为驱动,在商业智能领域(BI)为企业提供以人工智能(AI)驱动的大数据分析产品。DataFocus 不仅是全球首个中文自然语言大数据分析系统,更是中国商业智能领域大数据挖掘与运用的佼佼者。目前,DataFocus 帮助来自不同行业的企业管理着超百亿的数据,专注成为人工智能与商业智能领域创新的“探路者”。

DataFocus 作为全球首个中文类自然语言数据搜索分析系统,可以让不懂代码、不会 SQL 语句的业务人员在 3 秒内完成图表制作,10 分钟创建出美观的可视化大屏,真正为企业人员节省时间、节省成本、节省精力,让企业进入数字化管理新模式,成为推动企业数字化转型的重要力量。

以上就是关于问题【数据分析真的每天都是 python,SQL 吗?转行数据分析的话要重点学习什么呢?】的全部回答,希望能对大家有所帮助,内容收集于网络仅供参考,如要实行请慎重,任何后果与本站无关!

喜欢 (0)