关于问题减肥的时候是先减皮下脂肪还是内脏上的脂肪呢?一共有 2 位热心网友为你解答:
【1】、来自网友【力训研究所肉崽】的最佳回答:
一、人体脂肪的消耗有明确的位置优先级:优先消耗内脏脂肪
与许多自媒体说的不太一样,人体的脂肪消耗并不是全身均匀的。虽然有少数研究得出减肥时消耗的内脏脂肪比皮下脂肪少[1][2],但大多数研究指出『减肥过程中内脏脂肪比皮下脂肪消耗更多』。
Kelley 等人 2004 年在权威期刊《Diabetes Care》上发表了一篇论文,针对 39 名肥胖的 2 型糖尿病患者(平均体重 100kg,平均 BMI35)进行减肥实验(节食+药物),26 周受试者们减去的内脏脂肪(26%)明显高于皮下脂肪(15%)[3]。
原文截图
查了下《Diabetes Care》的因子高达 18.1,1 区的,比较可信。
查询页面
Ross 等人 2004 年招募了 54 名肥胖妇女(平均腰围 110CM,平均 BMI32),其中 15 人采用节食减肥,17 人运动减肥[4]。结果节食减肥组减去的内脏脂肪(20.8%)比腹部皮下脂肪(8.9%)更多;运动组减的内脏脂肪(30%)也比皮下脂肪多(16.9%)。
Subcuttaneous fat 是皮下脂肪,visceral fat 是内脏脂肪
除了这两个,还有大量关于节食的研究,都支持上述结论:
- Weinser 等人 2001 年:23 名肥胖女性,26 周减去内脏脂肪 40.7%、皮下脂肪%33.1[5];
- Gower 等人 2002 年:19 名肥胖女性,26 周减去内脏脂肪 38.5%、皮下脂肪 30.3%[6];
- Pascuali 等人 2000 年:10 名肥胖女性,4 周减去内脏脂肪 8.3%、皮下脂肪 6.5%[7];
- Alvarez 等人 2005 年:6 名肥胖男性,13 周减去内脏脂肪 23.9%、皮下脂肪%17.7[8];
- Rice 等人 1999 年:9 名肥胖男性,16 周减去内脏脂肪 35%、皮下脂肪 25%[9];
- Weits 等人 1989 年:20 名肥胖女性,12 周减去内脏脂肪 15.1%、皮下脂肪 10.6%[10];
- Okura 等人 2002 年:14 名肥胖女性,14 周减去内脏脂肪 40%、皮下脂肪 28%[11];
- Fujioka 等人 1991 年:26 名肥胖女性,8 周减去内脏脂肪 33.3%、皮下脂肪 22.6%[12];
- Janssen 等人 1999 年:13 名肥胖女性,16 周减去内脏脂肪 28.6%、皮下脂肪 18.8%[13];
- Tchernof 等人 2002 年:25 名肥胖女性,14 周减去内脏脂肪 36.4%、皮下脂肪 23.7%[14];
- Thong 等人 2000 年:14 名肥胖男性,12 周减去内脏脂肪 25.2%、皮下脂肪 15.7%[15];
- Tiikainen 等人 2003 年:11 名肥胖女性,17 周减去内脏脂肪 23%、皮下脂肪 13%[16];
- Tiikainen 等人同年的另一项研究中 12 名肥胖女性,17 周减去内脏脂肪 29%、皮下脂肪 14%[16];
- ROSE 等人 2000 年:14 名肥胖男性,13 周减去内脏脂肪 28.1%、皮下脂肪 15.6%[17];
- Gambinery 等人 2003 年:7 名肥胖女性,26 周减去内脏脂肪 18.8%、皮下脂肪 8.4%[18];
采用节食加运动的研究,结论也类似:
- Park 等人 2004 年:47 名肥胖者,12 周减去内脏脂肪 23.8%、皮下脂肪 19.9%[19];
- Nakamura 等人 2000 年:60 名肥胖女性,13 周减去内脏脂肪 12.5%、皮下脂肪 8.9%[20];
- Park 等人 2005 年:36 名肥胖女性,12 周减去内脏脂肪 22.5%、皮下脂肪 14.8%[21];
- Okura 等人 2005 年:71 名肥胖女性,14 周减去内脏脂肪 39%、皮下脂肪 24%[22];
- Pare 等人 2001 年:45 名肥胖男性,52 周减去内脏脂肪 19.9%、皮下脂肪 10.1%[23];
采用节食加减肥药物的研究,依然支持上述结论:
- Kelley 等人 2004 年(奥利司他):19 名肥胖者,26 周减去内脏脂肪 28%、皮下脂肪 16%[24];
- Tiikk 等人 2004 年(奥利司他):24 名肥胖女性,21 周减去内脏脂肪 27%、皮下脂肪 14%[25];
- Kim 等人 2004 年(盐酸西布曲明):28 名肥胖女性,12 周减去内脏脂肪 19.9%、皮下脂肪 16.5%[26];
- Kamel 等人 2000 年:17 名肥胖男性(盐酸西布曲明),26 周减去内脏脂肪 37.5%、皮下脂肪 24%[27];19 名肥胖女性,26 周减去内脏脂肪 43.3%、皮下脂肪 20.1[27];
- Yip 等人 2001 年:20 名肥胖女性(盐酸西布曲明),24 周减去内脏脂肪%35.5、皮下脂肪%26.2[28];
总之,不管是节食、运动、药物等一切减肥方式(还有胃部手术的没放上来),『减肥过程中内脏脂肪一般比皮下脂肪消耗更多』,所以人体消耗脂肪,是有部位的优先级的。
二、同样是人身上的肥肉,『脂肪』和『脂肪』是不同的
按颜色,人体脂肪可以分白色脂肪和棕色脂肪[29][30],以及可以演化成棕色脂肪的米色脂肪[31];按部位,脂肪有皮下、内脏、骨骼肌内脂、心肌脂等。
脂肪组织不仅是脂肪滴的容器,也是调节内分泌的器官。脂肪细胞中富含神经、血管和各种结缔组织[32],能分泌多种细胞因子,调节食欲、能量代谢、免疫功能和生殖[33];
皮下脂肪和内脏脂肪都是白色脂肪组织,但它们具有不同的作用(如内分泌)。皮下脂肪分泌瘦素,对健康可能更有益或者至少无害[34],而内脏脂肪分泌各种促炎物质,如白介素 IL-6、C-反应蛋白 CRP[33]等,它们与代谢综合征有关[35][36][37][38][39][40]。
说个题外话,皮下脂肪和内脏脂肪的代谢特性差异,也造成了绝经前女性的代谢疾病率明显低于男性[41][42][43][44][45][46][47];并且即便男性和女性的身体脂肪总量相等这种疾病率差异依然存在[48][49]。这主要因为雌激素把脂肪从『内脏』向『腿皮下』“转移”[50][51][52][53][54][55],如果全身脂肪总量相同,男性的内脏脂肪量可能是女性的 2 倍[56]。
雌激素与脂肪分布
内脏和皮下脂肪脂肪的代谢特性也有不同。Virtanen 等人通过同位素标记的葡萄糖,证明了内脏脂肪对葡萄糖的摄取明显高于皮下脂肪[57];Andersson 等人让受试者口服了带有同位素标记的甘油三酯,发现内脏脂肪(腹腔网膜)对甘油三酯的摄取显著高于皮下脂肪 50%以上[58]。
三、相对而言,内脏脂肪更容易被释放、被身体利用
这不是什么新鲜观点,早就是主流结论了。最典型的是 Robert 等人 2007 年发表在权威期刊《Diabetes》上的研究,用碳 14 同位素标记方法追踪来自内脏和非内脏脂肪酸[59]。
封面
这篇论文包含了 AB 两个研究。
- A 研究中,内脏脂肪酸释放为 60±7%,非内脏脂肪酸释放 24±6%;
- B 研究中内脏脂肪酸释放为 54±3%,非内脏脂肪酸释放 16±5%。
这些数据很好的说明了内脏脂肪具有更强的代谢活跃性,更容易被摄取和利用。
内脏脂肪酸释放(白)VS 非内脏脂肪酸释放(黑)
1991 年,Jensen 等人也用上述方法观察研究了 20 名女性(8 人上身肥胖/6 人下身体肥胖/6 人不肥胖)餐后脂肪酸的总释放情况[60]:
- 上身肥胖者的脂肪酸释放为 161±16 微摩/分钟;
- 下身肥胖者的脂肪酸释放为为为 111+/-9 微摩/分钟;
- 非肥胖者的脂肪酸释放为为 92+/-9 微摩/分钟。
同位素标记追踪的结果证明了腿部脂肪释放的脂肪酸明显少于内脏脂肪。Guo 等人也用类似方法,研究了 8 名上身肥胖和下身肥胖的女性餐后脂肪酸的代谢,发现了内脏脂肪和下半身堆积的脂肪,在餐后脂肪酸流量方面有显著差异[61]。
- 上身肥胖组的女性内脏脂肪酸释放流为 275±45 微摩尔/分钟;
- 下半身肥胖组的女性内脏脂肪酸释放流为 88±24 微摩尔/分钟。
这些数据证明了内脏脂肪的代谢流动性明显高于皮下脂肪,优先被释放,优先被消耗。
类似的研究不少[62][63][64][65],结论从性质上相似,就不挨个细说了。总之,内脏脂肪酸的代谢活跃性相对于其他部位更强、更容易被释放出来利用。
这也解释了为什么,很多女生发现减肥初期肚子减得最明显,胸和屁股减得少一些,减肥之后形体得到了美化,腰臀比降低了。
四、内脏脂肪对脂解激素的敏感性更高
脂解激素,指的是人体处于禁食、运动或能量不足的状态时器官分泌一些激素。
这些激素从器官(肾脏、胰腺等)被释放,随血液运输到脂肪细胞,与其表面的受体结合,然后引发一系列反应,让脂肪细胞中的脂肪酸被释放出来,供各器官和大脑使用。
典型的脂解激素有胰高血糖素[66]、肾上腺素[67]和去甲肾上腺素[68]等;其中,肾上腺素被认为是最主要的一种。
脂解激素
内脏脂肪对脂解激素更敏感,跟受体有很大关系。
Jeong 等人研究了女性皮下(大腿/腹部)和内脏(腹腔网膜)脂肪,发现内脏脂肪细胞与皮下脂肪细胞表面的脂解激素(如肾上腺素)的受体位点数量、分布都有差异[69]:皮下脂肪细胞上的脂解激素(肾上腺素)受体β数量比α-2 要少,而内脏脂肪细胞上的β受体跟α-2 一样多。
1990 年,Arner 等人研究了 32 名非肥胖男女腹部和臀部脂肪细胞中β肾上腺素受体,发现腹部脂肪细胞上的β肾上腺素受体数量几乎是臀部脂肪细胞上的 2 倍,而且腹部脂肪细胞上的肾上腺素受体β1、β2、β3[70]十分活跃。这可在很大程度上解释内脏脂肪细胞对脂解激素的敏感反应和优先燃烧。
当然,既然有脂解,也就有抗脂解。顾名思义,抗脂解就是对抗脂肪分解,“把脂肪酸关在脂肪细胞里不让它跑出来被燃烧”。
Arner 等人还报道说,抗脂解激素(如胰岛素)的受体,在皮下脂肪更活跃[70],但在内脏脂肪细胞中不活跃[71][72]。因此抗脂解激素很难把内脏脂肪制约在脂肪细胞中,结果内脏脂肪容易不受管控的逸出,在供能上优先级较高。
作为一个典型证据,Meek 等人对 26 人注射胰岛素后,腿部皮下脂肪组织的脂肪酸释放几乎完全被制止,而内脏脂肪依然在释放脂肪酸(虽然减少了 65%)[73]。
打个有趣的彼方,就像现在疫情来了要封闭清零:
- 脂肪酸像是居民,腿臀部和内脏就是不同的小区;
- 脂解激素有点像快递员,他们要让小区居民出来拿快递;
- 抗脂解激素就是负责封闭小区的居委会,不让小区居民出来;
- 腿臀部小区居民比较听居委会的话,对外卖的诱惑视若无睹,老老实实待在家里;
- 内脏小区居民不太听居委会话,对快递员很热情,总是跑到外面去拿快递。
五、内脏脂肪的供能优先级:地理位置优势
我们已经知道,在禁食/饥饿/运动/能量不足期间,肾脏/胰腺等器官分泌脂解激素作用于脂肪细胞,释放脂肪酸出来供身体使用。
但是释放的脂肪酸,并不是直接到了各种器官,而是先去肝脏。Michele 等人报告[74]在禁食/能量不足状态下,脂肪细胞释放的脂肪酸(至少大部分)先到肝脏,再到肌肉和其他组织。脂肪细胞为什么会开始释放脂肪酸?我们刚刚解释过,脂解激素刺激。
把两张图拼起来就是这样:
粗略框架
这样,整个流程就大体上完整了。所以我们应该清楚,脂肪组织释放的脂肪酸,并不是直接去了肌肉/其他器官,而是先去了肝脏,在肝脏合成 TG(甘油三酯),然后再送往肌肉/其他器官。
因为肝脏是能量代谢的中心[74][75]。
这和我们的主题(内脏脂肪供能的优先级)有什么关系?答案是,相比大腿而言,内脏脂肪离肝脏近,向肝脏供能便捷——门静脉[76][77][78]。
门静脉
虽然这种说法听起来有点像地摊文学,但确实在许多科学文献都有提及:『门静脉理论』[79][80]。即:因为网膜、肠系膜等内脏脂肪组织的血管直接连入门静脉,可以将大量的脂肪酸释放到门静脉中,门静脉的脂肪酸浓度可显著高于动脉脂肪酸浓度,使肝脏沐浴在高浓度的脂肪酸流中[81][82]。
Soren 等人早在 2004 年就证明[83]:男性和女性受试者的内脏脂肪越多(越胖),肝脏得到的脂肪酸中,来自内脏脂肪的比例就越高。
男性和女性受试者从内脏脂肪组织脂解产生脂肪酸,向肝脏输送的百分比
Soren 等人的研究是一个强有力的证据,证明了餐后内脏肥胖的人的肝脏暴露于更高浓度的游离脂肪酸。这也解释了为什么内脏脂肪在供能上,相对于大腿/皮下脂肪,具有更高的优先级。
总之,减肥一定是先减内脏脂肪、或者说内脏脂肪动用比例较大的。
References
1. ^Okura T, Nakata Y, Tanaka K. Effects of exercise intensity on physical fitness and risk factors for coronary heart disease. Obes Res 2003; 11: 1131–1139.
2. ^ Weinsier RL, Hunter GR, Gower BA, Schutz Y, Darnell BE, Zuckerman PA. Body fat distribution in white and black women: different patterns of intraabdominal and subcutaneous abdominal adipose tissue utilization with weight loss. Am J Clin Nutr 2001; 74: 631–636.
3. ^Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 2004; 27: 33–40.
4. ^Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 2004; 12: 789–798.
5. ^Weinsier RL, Hunter GR, Gower BA, Schutz Y, Darnell BE, Zuckerman PA. Body fat distribution in white and black women: different patterns of intraabdominal and subcutaneous abdominal adipose tissue utilization with weight loss. Am J Clin Nutr 2001; 74: 631–636.
6. ^ Gower BA, Weinsier RL, Jordan JM, Hunter GR, Desmond R. Effects of weight loss on changes in insulin sensitivity and lipid concentrations in premenopausal African American and White women. Am J Clin Nutr 2002; 76: 923–927.
7. ^ Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 2000; 85: 2767–2774.
8. ^Alvarez GE, Davy BM, Ballard TP, Beske SD, Davy KP. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol Endocrinol Metab 2005; 289: E665–E669.
9. ^Rice B, Janssen I, Hudson R, Ross R. Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 1999; 22: 684–691.
10. ^Weits T, van der Beek EJ, Wedel M, Hubben MW, Koppeschaar HP. Fat patterning during weight reduction: a multimode investigation. Neth J Med 1989; 35: 174–184.
11. ^Okura T, Tanaka K, Nakanishi T, Lee DJ, Nakata Y, Wee SW et al. Effects of obesity phenotype on coronary heart disease risk factors in response to weight loss. Obes Res 2002; 10: 757–766
12. ^Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y et al. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes 1991; 15: 853–859.
13. ^Janssen I, Ross R. Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int J Obes Relat Metab Disord 1999; 23: 1035–1046.
14. ^Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002; 105: 564–569.
15. ^Thong FS, Hudson R, Ross R, Janssen I, Graham TE. Plasma leptin in moderately obese men: independent effects of weight loss and aerobic exercise. Am J Physiol Endocrinol Metab 2000; 279: E307–E313.
16. ^abTiikkainen M, Bergholm R, Vehkavaara S, Rissanen A, Hakkinen AM, Tamminen M et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 2003; 52: 701–707.
17. ^Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after dietinduced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 2000; 133: 92–103.
18. ^Gambineri A, Pagotto U, Tschop M, Vicennati V, Manicardi E, Carcello A et al. Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome. J Endocrinol Invest 2003; 26: 629–634.
19. ^Park HS, Sim SJ, Park JY. Effect of weight reduction on metabolic syndrome in Korean obese patients. J Korean Med Sci 2004; 19: 202–208.
20. ^Nakamura M, Tanaka M, Kinukawa N, Abe S, Itoh K, Imai K et al. Association between basal serum and leptin levels and changes in abdominal fat distribution during weight loss. J Atheroscler Thromb 2000; 6: 28–32.
21. ^ Park HS, Lee K. Greater beneficial effects of visceral fat reduction compared with subcutaneous fat reduction on parameters of the metabolic syndrome: a study of weight reduction programmes in subjects with visceral and subcutaneous obesity. Diabet Med 2005; 22: 266–272.
22. ^Okura T, Nakata Y, Lee DJ, Ohkawara K, Tanaka K. Effects of aerobic exercise and obesity phenotype on abdominal fat reduction in response to weight loss. Int J Obes (London) 2005; 29: 1259–1266.
23. ^Pare A, Dumont M, Lemieux I, Brochu M, Almeras N, Lemieux S et al. Is the relationship between adipose tissue and waist girth altered by weight loss in obese men? Obes Res 2001; 9: 526–534.
24. ^Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 2004; 27: 33–40.
25. ^ Tiikkainen M, Bergholm R, Rissanen A, Aro A, Salminen I, Tamminen M et al. Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am J Clin Nutr 2004; 79: 22–30.
26. ^Kim DM, Yoon SJ, Ahn CW, Cha BS, Lim SK, Kim KR et al. Sibutramine improves fat distribution and insulin resistance, and increases serum adiponectin levels in Korean obese nondiabetic premenopausal women. Diabetes Res Clin Pract 2004; 66 (Suppl 1): S139–S144.
27. ^abKamel EG, McNeill G, Van Wijk MC. Change in intra-abdominal adipose tissue volume during weight loss in obese men and women: correlation between magnetic resonance imaging and anthropometric measurements. Int J Obes Relat Metab Disord 2000; 24: 607–613.
28. ^Yip I, Go VL, Hershman JM, Wang HJ, Elashoff R, DeShields S et al. Insulin–leptin–visceral fat relation during weight loss. Pancreas 2001; 23: 197–203.
29. ^nnon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological reviews. 2004;84:277–359.
30. ^Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387:90–94.
31. ^Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. American journal of physiology Endocrinology and metabolism. 2012;302:E19–31.
32. ^Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2010b;34(Suppl 1):S36–42.
33. ^abTrujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr.Rev. 2006;27:762–778.
34. ^Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: mplication of depot differences in adipose tissue for obesity complications. Molecular aspects of medicine. 2013;34:1–11.
35. ^ Bjorntorp P. Metabolic implications of body fat distribution.Diabetes Care 1991; 14: 1132±1143.
36. ^Kissebah AH, Videlingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982;54:254-60.
37. ^Abate N, Garg A, Peshock RM, StrayGundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995;96: 88-98.
38. ^Planas A, Clará A, Pou JM, et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int J Obesity 2001;25:1068–70
39. ^Kete I, Mariken, Volman M, et al. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol 2007;156:655–61.
40. ^Alexander JK. Obesity and coronary heart disease. Am J Med Sci 2001;321:215–24.
41. ^Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390
42. ^Wingard DL, Suarez L, Barrett-Connor E (1983) The sex differential in mortality from all causes and ischemic heart disease. Am J Epidemio1117:165-172
43. ^Freedman DS, Jacobsen S J, Barboriak JJ et al. (1990) Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 81:1498-1506
44. ^Larsson B, Bengtsson C, Bj6rntorp Pet al. (1992) Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? Am J Epidemio1135: 266-273
45. ^Seidell JC, Cigolini M, Charzewska Jet al. (1991) Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 87:203-210
46. ^Despr6s JR Moorjani S, Fefland Met al. (1989) Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 9:203-210
47. ^Despr6s JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10: 497-511
48. ^ Despr6s JP, Allard C, Tremblay A, Talbot J, Bouchard C (1985) Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 34:967-973
49. ^Krotkiewski M, Bj6rntorp P, Sj6strOm L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162
50. ^Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.
51. ^Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983;72:1150–62.
52. ^Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004;5:197–216.
53. ^Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390
54. ^Kvist H, Chowdury B, Gang~rd U, Tyl6n U, Sj6str0m L (1988) Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351-1361
55. ^SjOstr6m L, Kvist H (1988) Regional body fat measurements with computed tomography-scan and evaluation of anthropometric predictions. Acta Med Scand [Suppl] 723:169-177
56. ^Lemieux S, Prud‘homme D, Bouchard C, Tremblay A, Despr6s JP (1993) Sex differences in the relation of visceral adipose tissue to total body fatness. Am J Clin Nutr 58:463-467
57. ^Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002
58. ^Mårin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992
59. ^Nelson RH, Basu R, Johnson CM, Rizza RA, Miles JM. Splanchnic spillover of extracellular lipase-generated fatty acids in overweight and obese humans. Diabetes. 2007;56:2878–2884.
60. ^Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. J. Clin. Invest. 1991;88:609–613.
61. ^Guo ZK, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes. 1999;48:1586–1592.
62. ^Jensen MD. Gender differences in regional fatty acid metabolism before and after meal ingestion. J. Clin. Invest. 1995;96:2297–2303.
63. ^Jensen MD, Johnson CM. Contribution of leg and splanchnic free fatty acid (FFA) kinetics to postabsorptive FFA flux in men and women. Metabolism. 1996;45:662–666.
64. ^Basu A, et al. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2001;280:E1000–E1006.
65. ^Meek S, Nair KS, Jensen MD. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14.
66. ^Birbrair A., Zhang T., Wang Z.M., Messi M.L., Enikolopov G.N., Mintz A., Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22:2298–2314.
67. ^Lafontan M., Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 2009;48:275–297.
68. ^Jaworski K., Sarkadi-Nagy E., Duncan R.E., Ahmadian M., Sul H.S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G1–G4.
69. ^ Mi-Jeong Lee,Susan K. Fried.Depot-Specific Biology of Adipose Tissues: Links to Fat Distribution and Metabolic Risk.Book Editor(s):Todd Leff,James G. Granneman.
70. ^abP Arner 1.Differences in lipolysis between human subcutaneous and omental adipose tissues.Ann Med. 1995 Aug;27(4):435-8.
71. ^Leibel RL, Edens NK, Fried SK. Physiologic basis for the control of body fat distribution in humans. Annu.Rev.Nutr. 1989a;9:417–443.
72. ^Lonnqvist F, Thorne A, Large V, Arner P. Sex differences in visceral fat lipolysis and metabolic complications of obesity. Arterioscler.Thromb.Vasc.Biol. 1997;17:1472–1480.
73. ^Meek SE, Nair KS, Jensen MD. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14.
74. ^abMichele Alves-Bezerra and David E. Cohen.Triglyceride metabolism in the liver.Compr Physiol. Author manuscript; available in PMC 2019 Feb 15.
75. ^Vasconcellos R, Alvarenga EC, Parreira RC, Lima SS, and Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 28: 1773–1788, 2016.
76. ^Antonio Manenti 1, Gianrocco Manco 2, Alberto Farinetti 2, Luca Roncati 3.The intrahepatic branches of portal vein: a relevant surgical topic.Surgery. 2021 May;169(5):1265.
77. ^ Z C Edelson.Preduodenal portal vein.Am J Surg. 1974 May;127(5):599-600.
78. ^Connie Ju , Xin Li , Sameer Gadani , Baljendra Kapoor , Sasan Partovi.Pfortaderthrombose: Diagnose und endovaskuläres Management.Portal Vein Thrombosis: Diagnosis and Endovascular Management.
79. ^Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes.
80. ^R N Bergman 1.Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein?.Diabetologia. 2000 Jul;43(7):946-52.
81. ^Michael D. Jensen.Role of Body Fat Distribution and the Metabolic Complications of Obesity.J Clin Endocrinol Metab. 2008 Nov; 93(11 Suppl 1): S57–S63.
82. ^J Svedberg, G Strömblad, A Wirth, U Smith, and P Björntorp.Fatty acids in the portal vein of the rat regulate hepatic insulin clearance.J Clin Invest. 1991 Dec; 88(6): 2054–2058.
83. ^Soren Nielsen,1 ZengKui Guo,1 C. Michael Johnson,2 Donald D. Hensrud,1 and Michael D. Jensen1.Splanchnic lipolysis in human obesity.J Clin Invest. 2004 Jun 1; 113(11): 1582–1588.
84. ^eters S. J., Dyck D. J., Bonen A., Spriet L. L. Effects of epinephrine on lipid metabolism in resting skeletal muscle. The American Journal of Physiology. 1998;275(2 Part 1):E300–E309.
85. ^Dyck D. J., Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. The American Journal of Physiology. 1998;275(5 Part 1):E888–E896.
86. ^Peters S. J., Dyck D. J., Bonen A., Spriet L. L. Effects of epinephrine on lipid metabolism in resting skeletal muscle. The American Journal of Physiology. 1998;275(2 Part 1):E300–E309.
87. ^Dyck D. J., Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. The American Journal of Physiology. 1998;275(5 Part 1):E888–E896.
88. ^alanian J.L., Tunstall R.J., Watt M.J., Duong M., Perry C.G.R., Steinberg G.R., Kemp B.E., Heigenhauser G.J.F., Spriet L.L. Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:1094–1099.
89. ^Jocken J.W., Blaak E.E. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol. Behav. 2008;94:219–230.
90. ^Holm C., Osterlund T., Laurell H., Contreras J.A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 2000;20:365–393.
91. ^Shen W.J., Patel S., Natu V., Kraemer F.B. Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry. 1998;37:8973–8979.
92. ^Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., Lass A., Neuberger G., Eisenhaber F., Hermetter A., et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–1386.
93. ^Villena J.A., Roy S., Sarkadi-Nagy E., Kim K.H., Sul H.S. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: Ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 2004;279:47066–47075.
94. ^Roepstorff C., Vistisen B., Kiens B. Intramuscular triacylglycerol in energy metabolism during exercise in humans. Exerc. Sport Sci. Rev. 2005;33:182–188.
95. ^Vaughan M, Berger JE, Steinberg D 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239: 401–409
96. ^Petridou A., Chatzinikolaou A., Avloniti A., Jamurtas A., Loules G., Papassotiriou I., Fatouros I., Mougios V. Increased triacylglycerol lipase activity in adipose tissue of lean and obese men during endurance exercise. J. Clin. Endocrinol.
97. ^Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW 2004. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279: 48968–48975
98. ^Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A 2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50: 3–21
99. ^Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383–1386
100. ^Eichmann TO, Kumari M, Haas JT, Farese RV Jr, Zimmermann R, Lass A, Zechner R 2012. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 287: 41446–41457
101. ^Vaughan M, Berger JE, Steinberg D 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239: 401–409
102. ^Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R 2002. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277: 4806–4815
103. ^Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R 2006. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281: 40236–40241
104. ^Morley N, Kuksis A 1972. Positional specificity of lipoprotein lipase. J Biol Chem 247: 6389–6393
105. ^ogalska E, Cudrey C, Ferrato F, Verger R 1993. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5: 24–30
106. ^Bertrand T, Auge F, Houtmann J, Rak A, Vallee F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, et al. 2010. Structural basis for human monoglyceride lipase inhibition. J Mol Biol 396: 663–673
107. ^Ranallo R.F., Rhodes E.C. Lipid metabolism during exercise. Sports Med. 1998;26:29–42.
108. ^Campbell J, Martucci AD, Green GR. Plasma albumin as an acceptor of free fatty acids. Biochem J. 1964;93:183–189.
109. ^Miller N.E. HDL metabolism and its role in lipid transport. Eur. Heart J. 1990;11:1–3.
110. ^Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 2006;21:259–268.
111. ^Gimeno RE, Ortegon AM, Patel S, et al. Characterization of a heart-specific fatty acid transport protein. J Biol Chem. 2003;278:16039–16044.
112. ^Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JF. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res. 1999;85:329–337.
113. ^Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217–235.
114. ^Harasim E., Kalinowska A., Chabowski A., Stepek T. The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Higieny Medycyny Doswiadczalnej. 2008;62:433–441.
115. ^Bruce CR, Brolin C, Turner N, Cleasby ME, van der Leij FR, Cooney GJ, Kraegen EW. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Am J Physiol Endocrinol Metab. 2007;292:E1231–1237.
116. ^Monaco C., Whitfield J., Jain S.S., Spriet L.L., Bonen A., Holloway G.P. Activation of AMPKα2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS ONE. 2015;10:e0126122.
117. ^van der Leij FR, Huijkman NC, Boomsma C, Kuipers JR, Bartelds B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab. 2000;71:139–153.
118. ^Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25:495–520.
119. ^McGarry J.D., Brown N.F. The mitochondrial carnitine palmitoyltransferase system. Eur. J. Biochem. 1997;244:1–14.
120. ^Holloway G.P., Bezaire V., Heigenhauser G.J.F., Tandon N.N., Glatz J.F.C., Luiken J.J.F.P., Bonen A., Spriet L.L. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J. Physiol. 2006;571:201–210.
121. ^Houten S.M., Violante S., Ventura F.V., Wanders R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 2016;78:23–44.
【2】、来自网友【FitnessTips】的最佳回答:
你好,谢邀
减肥的时候先减皮下脂肪,还是内脏脂肪?
我的回答是他们两个是一起减的。
这其实是很简单的一个道理就和减肥能不能局部减肥是一个道理。
那我就来先再说一下是为什么?
你身体上所有的脂肪他就好比是一桶水。
它身体里面脂肪物质构成成分是一样的。在这个时候你想要把这个桶里面的水减少一点,你去把这桶水往出舀的时候,他难道只会少你去舀出来的那一块吗?
另外一个就是因为内脏脂肪他给身体健康带来的影响和危害是比皮下脂肪要多一些。
但是内脏脂肪的含量,比皮下脂肪要少。
这个就好比你去减肥你其实整体都比较胖,但是你只觉得你肚子上肉最多啊,你就光想着去减肚子。
和这个其实是一个道理。
所以说你不用担心这个问题啊,只要努力的去锻炼控制饮食,等你的皮下脂肪减下去的时候,你的内脏脂肪肯定会有所减少的。
希望有帮到你。